5 The One-Dimensional Wave Equation on
the Line

5.1 Informal Derivation of the Wave Equation

We start here with a simple physical situation and derive the 1D wave equa-
tion. The hope is that this will provide you an initial intuitive feeling for
expected behavior of solutions. It also gives importance to a fundamental
equation, and gives physical meaning for initial, and boundary conditions. In
a short appendix at the end of this section we present a couple other physical
problems leading to the wave equation.

One of the first PDEs that was developed and worked on was a model
of the vibrating string!. Here is a rather informal derivation. Imagine a
string lying entirely in the plane and along the x-axis. It is assumed struck
or plucked and vibrates in the plane. Let u = u(z,t) be the position of the
(centerline of the) string at location x at time t (see figure 1). Assume the
following;:

1. Oscillations are small: |u| << length of the string (= [);
2. Points on the string move vertically in the x,u plane;

3. Slope of the tangent to the string remains small: |u,| << 1. So
stretching of the string remains negligible. Arclength a = «(t) =

fol V14 (ug)?de ~ 1

4. The string is perfectly flexible (no resistance to bending); tension is in
the tangent direction and horizontal tension is constant.

Consider a string segment [z,z + Az|, T(x,t) = tension at z at time ¢,
O©(z,t) = angle of string with respect to the x-axis at x at time ¢. By
Newton’s second law, F(z,t) = pr%, where p is the linear density of
the string (considered constant along the string), and the force comes from
tension in the string only. There is no external force (such as gravity) exerted
on the string. Horizontal tension is constant, and vertical tension moves the
string vertically, so balancing forces in the horizontal direction gives
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Figure 1: Notation for the derivation of the string equation

T(x 4 Ax,t)cos(O(z + Ax,t)) = T'(z,t) cos(O(z,t)) := 7 = constant,
and in the vertical direction gives

F = pr%(f,t)
=T(x + Az, t)sin(0(x + Az, t)) — T(x,t)sin(O(z, 1))
=T(x + Ax,t) cos(O(x + Az, t)) tan(O(x + Az, t))
—T'(z,t) cos(O(z,t)) tan(O(x, 1))
ou ou
= T{a(ﬂf + Az, t) — %(I,t)}

from Newton’s second law, for some ¢ € [z, z+ Ax]. Dividing this expression

by pAz and letting Ax — 0, we obtain
0%u 0?u
2 _
ey (z,8) = ot? (2,) (1)

where ¢? = 7/p > 0.

Remark: Tension 7 has units of mass/time?, linear density has units of
mass/length?, so ¢ = \/7/p has units of length/time; that is, it has units of
speed, and we speak of ¢ as the wave speed.

5.2 d’Alembert Solution

As d’Alembert did in the 18th century, consider a “really long” string; hence,
let (1) hold for |z| < co,t > 0. We now do what is very common in PDEs,
namely we transform the equation. Let

§:$_6t7n:x+6t7 andu(x,t) :U(§77]> .

This has the effect of rotating the coordinate axes so the equation collapses to
a single derivative term that can be integrated directly. Mechanically, by the
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chain rule, u, = ’Ugg—i + vng—z = Vg +vy,. Also, uy = Ug% —G—UU% = —cvg + cvy.

Taking derivatives again gives
_ 2 2 2
Uy = Vge + 20¢p + Uy Ugg = C Ve — 2C7 Vg + C Uy

which implies wy — Uz, = —4cvg, = 0, or ve, = 0. Hence, ve = F'(§).
Since the right hand side is an arbitrary function of the single variable &, it
is convenient to write it as a derivative. Thus, v(§,n) = F(§) + G(n). F,G
are arbitrary differentiable functions of a single variable. Therefore,

u(z,t) = F(z —ct)+ G(x +ct) . (2)

This is the general solution to the one-dimensional (1D) wave equa-
tion (1). We will return to giving an interpretation of (2) shortly.

The question arises why we chose £ = x — ct, n = = + ct. First write (1)
in the operator form:

Pu  ,0%u 0 0.,0 0

“oe o~ o e o e
and let v = (2 — ¢2)u. Hence,
v Ov

This is the simplest of first-order, linear PDEs we discussed in Section 4, and
it can be thought of in a couple of ways. Mainly, it looks like a directional
derivative. Note that for any differentiable function G of a single variable,
v(z,t) = G(z —ct) is a solution of (3): 3¢ = —cG'(x —ct), ¢3¢ = G’ (x — ct).
Hence, v = constant along lines x — ¢t = constant in the z,¢ plane. The
set of lines {(z,t) : * — ¢t = constant} is the family of characteristics (or
characteristic lines) for the PDE (3), and these carry all the information
for the solution. We could, having v, solve the first-order equation for
above, or we could have permuted the order of the first-order operators and

arrived at 9 9
v v
0=— —c— —v(x,t)=F(x+ct
ot Ox (1) ( )
for any differentiable function F'. In this case the set of characteristics is
{(z,t) : x4+ ct = constant}. Therefore, the characteristics x & ¢t = constant,
should play an integral part in the solution of the 1D wave equation, and

suggests the transformation above.



Remark: Any solution v(z,t) = G(z £ ct) is called a traveling wave solu-
tion. Therefore, the general solution, (2), of the wave equation, is the sum
of a right-moving wave and a left-moving wave.

5.3 The Cauchy Problem

Since (1) is defined on |z| < oo, t > 0, we need to specify the initial dis-
placement and velocity of the string. Let f, g be any functions defined on
the real line that are piecewise continuous, and integrable (so they go to zero
as x| — oo). This last statement seems a bit technical, but we want to
consider bounded solutions in this course, as much for physical reasons as for
mathematical reasons). Therefore, assume

u(z,0) = f(x), for |z| < oo
(4)

5i(2,0) = g() .

The Cauchy problem for the wave equation is made up of (1) and (4). If
we interpret u representing the vibration of a string, then we are specifying
initial displacement and velocity in expressions (4) (as we must in ODE spring
problems).

Note that, from (2), f(z) = u(z,0) = F(x) + G(z), which implies

cf'(x) = cF'(z) + cG'(x) . (5)

(The primes here mean differentiation with regard to the single variable the
function depends on.) Similarly, g(z) = w/(z,0) = —cF'(z) + ¢G'(z). So
adding this to (5), integrating, and dividing by 2¢ gives

Glr) = 35+ 5, [ sy +0 (0
Also, subtracting instead of adding gives
1
cf'(x) = g(z) = 2cF'(x) = F'(z) = 5 f'(2) = 5g(2)
Fe)= 31 = o [ oy + o, @



Thus, putting the arguments used in (2) into (6),(7), we have
u(z,t) = Fz —ct) + Gz + ct) = ${f(x — ct) + f(z + ct)}

—a [T gy)dy + 2 [27 g(y)dy + Cy + Cy

o

= 2{f(x—ct)+f(x+ct }—l-ZCfH;tg Ydy + C1 4+ Csy .

But u(z,0) = f(z) = f(z) + C1 + C; implies C; 4+ C = 0, so finally

x+ct

wat) = GUe =)+ fare}+g [ aa. @)
This is d’Alembert’s formula, or d’Alembert’s solution to the Cauchy
problem for the 1D wave equation on the line. Shortly we will give an inter-
pretation of this solution form that will hopefully help you. But if a question
calls for the general solution to the wave equation only, use (2). If the ques-
tion involves (1) and initial data (4), then refer to (8).

Theorem: If f and g are continuous, with continuous derivatives f'(x), f”(x),

on R, then d’Alembert’s formula (8) gives the (classical) solution to the wave
equation (1) for all x,¢, |z| < oco,t > 0, and satisfies the initial conditions (4)
on R.

Example 1: Consider

U — Cgy = 0 on |z| <oo,t>0
u(z,0) = %6_12 on |z| < oo
ur(z,0) =0 on |z| < oo

By (8), u(w,t) = & {e @ 4 e~ (@+e*} = Le=a"=rosh(2cat).

Remark: Figure 2 shows a plot of u(x,t) for ¢ = 2. We started with a
“Gaussian” initial distribution that immediately breaks off into two “Gaus-
sians”, only with smaller amplitude, each running off in different direc-
tions, but along straight lines. It appears as two diverging waves, which
gives some justification to (1) being called the (1D) wave equation. The
directions are the characteristic directions of the equation, here given by
T £ ct = x £ 2t = constant.

g'(x)



Figure 2: Graph of the solution to example 1

Example 2: Now consider

Uyt — Ugg = 0 on |z|<oo, t>0
u(z,0) =sin(z) on |zr| < oo
ui(z,0) = cos(2x) on |z| < oco.

T+t
u(z,t) = %{sin(ﬁ —t) +sin(x +t)} + % / cos(2y)dy

= %{Sin(x —t)+sin(x + 1)} + i{sin(?x + 2t) — sin(2z — 2t)}
= %{sin(:c) cos(t) — cos(x) sin(t) + sin(zx) cos(t) + cos(x) sin(t) }
+i{sin(2x) cos(2t) 4 cos(2x) sin(2t) — sin(2x) cos(2t) + cos(2z) sin(2t) }

= sin(x) cos(t) + %cos(2x) sin(2t)
= cos(t){sin(x) + cos(2z) sin(t)}

or some equivalent form using the trig addition formulas.



FEzercises

1. Show that the solution to

Uy — 4z =0, |x| <00, t>0
u(z,0) = uy(x,0) = 2sin(3x)

~ =

cos(6t) + 3 sin(3z) sin(6t).

is given by u(x,t) = 2sin(3z
2. Solve

Uy = 4y, on x| < 00, t >0
u(z,0) =0 on |z| < co

w(,0) = a7 on [z] < oo
(Answer: u = 3(tan™"(*5) — tan™'(*3%)).)

3. Verify that u(z,t) = 5

U = C*Ugy, satisfying initial data u(z,0) = 0, %’t’“ (z,0) = g(x).

f;tit g(y)dy is a solution to the wave equation

4. Obtain the general solution to equation u,, —3u;—4u,; = 0. (Hint: first
note that the equation is hyperbolic, so it has two real characteristics.
For obtaining the analogue of (2), think of the operator split like (2 —

gt)(ax + 8t)u = 0 and determine an appropriate set of values for
a,.)
(Answer: u(z,t) = F(4x +t) + G(z — t), or equivalently, u(z,t) =
F(x +t/4) + G( —t).)

5. For the Cauchy problem

Upy + Upr — 20Uy = 0 on |z| <oo, t>0
u(z,0) = f(z),u(x,0) = g(x) on x| < oo

first determine the general solution to the equation as done in the
previous problem, then use the initial data to obtain an analogue to
d’Alembert’s formula.

(Answer: u(z,t) = L {4f(x +t/4) + 5f(x — t/5)} + 2 [T () dy.)

z—t/5

6. What would be the analogue to d’Alembert’s formula for the Klein-
Gordon equation u;—c?uz+m?u = 0, |z| < oo, u(x,0) = f(x),u(x,0) =
g(x)? (Comment: This equation arises in quantum mechanics and will
come up again in Section 7.)



7. Notice that we have specified data on the z-axis, which is transverse
to the wave equation’s characteristics. What if data is specified on a
characteristic? This becomes a more delicate problem, but consider
Uy — Uz = 0 with u(x,0) = f(z) and u(x,z) = g(z). Since the
general solution to the equation is u(z,t) = F(z —t) + G(v + t), show
that G(z) = g(z/2) — F(0),F(z) = F(0) + f(z) — g(x/2), and so
u(z,t) = flz—t)+g(3(x+1)) — g(2(z —t)). What is the consistency
condition we would need for this to be a classical solution, assuming

f,g9 € C*(R)?

Let us consider a few rather illustrative examples that violates the smooth-
ness conditions of the theorem, but are easy to work with and helps us explain
more about the wave equation (and hyperbolic equations in general).

Example 3: Consider the Cauchy problem

Uy = CPUyy, |z] < oo, t >0
1 ifz>0

W, 0)=H@) =1 ¢ iz <0

Ut($70>20

Here H(x) is called the Heaviside function (or the unit step function), and
we’ll use the H notation throughout these Notes to designate the Heaviside
function. By d’Alembert’s formula, u(z,t) = 2{H (z + ct) + H(z — ct)}, but
this expression is not very informative about the geometry of the solution
or its behavior. Also, there are (propagating) discontinuities along the lines
x £ ¢t =0, so plotting these in x,t space (see figure 3), one sees the domain
(upper half of the plane) is separated into 3 regions. Pick any point (xg, o)
in the domain, but not on the characteristic lines x + ¢t = 0. There are
two characteristics or characteristic lines running through the point, namely
x4 ct = xg+ctg and x — ct = xg — cty. (To be more precise, we mean the set
{(z,t) e Rx R : 2+ ct = x9+ ctp} for the first equation, and an analogous
set of points for the second expression.) Then d’Alembert’s formula states
that the solution u at point (zg, 1) is given by

1 xo+cto
u(zo, to) = 5{]‘(:100 + cto) + f(xo+ cto)} + 2_0/ g(y)dy.
xo—cto

Therefore, noting that the characteristics through (g, ty) form a triangle, the
characteristic triangle, with the x-axis, d’Alembert’s formula just states that
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Figure 3: Domain sectioning for example 3

Figure 4: Characteristic triangles for points chosen in the discussion of ex-
ample 3

u(zo, to) is just the sum of the averages of the initial displacement function
/ at the endpoints of the base interval of the triangle, {f(x¢ + cto) + f(zo +
cto)}/2, plus the (scaled) integral of the initial velocity function g over the
interval. (Actually the last term is just t, times the average of g over the
interval [xg — cto, xo + cto).)

In the example above, where u = { f(x +ct) + f(z — ct)}/2, for any point
in region 1 (z + ¢t < 0), any characteristic triangle will have f = 0 at its
endpoints, so u = 0 in region 1. (see figure 4.) In region 3 (z—ct > 0), f =1
at each endpoint of the base of the triangle, so u = 1 for any point in region
3. In region 2 (—ct < x < ct), one end of the triangle falls in the 2 < 0 where
f =0, and the other end falls in > 0, where f =1,s0u = (1+0)/2=1/2
in region 2. The piecewise constant nature of the solution comes from the
piecewise constant aspect of the initial data.

Remark: Since f in this example does not meet the conditions of the theo-
rem and wu is discontinuous across the characteristics x + ¢t = 0, then u is
not a classical solution to the Cauchy problem. This is an important point.
The constructed u satisfies the problem everywhere except on these charac-



Figure 5: Numbered regions determined by the characteristics for example 4

teristics, so it holds almost everywhere in the upper half plane. But how
about on these two lines, and how are we to think about this ”solution”?
We will have more to say about this situation later, but think of u as a weak
solution to the IVP. More work is necessary to determine the appropriate
value of u on the characteristics associated with the point of discontinuity
for u(z,0) = f(z) = H(x).

Ezxample 4
Uy = CP Uy, |z| < 00, t >0
u(z,0) = hH(a — |x|)
ui(z,0) =0 |z] < oo .

Here c, a, h are positive constants. Now there are discontinuities at © = =+a,
so sketch in the characteristics from these points (z,t) = (£a,0) (figure 5).
Pick a point in each of the 6 subregions of the domain and proceed to draw
a characteristic triangle with each point chosen at the vertex of the triangle.
Then apply d’Alembert’s solution formula as interpreted above. You should
end up determining the solution to be u = 0 in regions 1, 3, 6; u = h/2 in
regions 2 and 5; and u = h in region 4. Hence, piece-wise constant initial
data lead to piece-wise constant solution. Drawing a horizontal line at level
0 <t <a/cand for t > a/e, you should picture the initial “block” of height
h being “pulled down” at its ends as t increases until time ¢ = a/c when the
block is uniform height h/2, but is twice as wide. Then it divides into two
blocks and for larger times the two blocks "run away from each other” along
their respective characteristics at speed c. (Figure 6 shows the graph of the
solution.)
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Figure 6: Solution to example 4 withc=h=a=1

Example 5
Upp = Uy, |z| < 00,t >0
u(z,0) =0
u(z,0) = AH(0 — |z — al)

Again A,a,d > 0 are constants, and H(d — |z — a|) = 1 if and only if
a—0 <x<a+d. Now the domain is broken up into 6 regions as shown in
figure 7. Then by d’Alembert’s formula, we have

= (0 in regions 1 and 3;
= % xxjtt Ady = At in region 2;

% f;f; Ady = AJ in region 5;

2 2 8 g &
I

- %ffj; Ady = é{x +t—a+ 4} in region 4;
= %fxaié Ady = 2{a+ 6 — x + t} in region 6.

FExercises

In each of these exercises, draw the three regions divided by the charac-
teristics emerging from the discontinuity on the z-axis, and determine the
solution in each region. For the equation uy = uy,, let

1. u(z,0) =0 and w;(z,0) = H(z) cos(x).

11
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Figure 7: The nature of the domain for example 5

Figure 8: Chain of spring-mass elements for development of the wave equa-
tion.

2. u(z,0) =1+ zH(x — 1) and u(z,0) = 0.

If we number the regions as in figure 4, then for this exercise, initial conditions
1, the answer is u(x,t) = (0,sin(z + t)/2, cos(z)sin(t)) in regions (1,2,3),
respectively. For the second initial conditions, u(x,t) = (1, 14+ (z+t)/2, 14+2)
in regions (1,2,3). (Remember, in this last exercise, be sure to interpret the
functional notation correctly; if you have u = {f(z +¢) + f(z — t)}/2 in
region 3, e.g., then f(z +t)=14+z+1.)

Summary: You need to know d’Alembert’s formula for the solution of
Cauchy’s problem. You need to compute characteristics for wave equations
and know how to use them to construct a solution to a given problem.

5.4 Appendix: A couple of physical problems leading
to a wave equation

Consider a chain of elements, each with mass m, and a spring with spring
constant k, of length Az (see Figure 8). Denote the position of the mass
associated with the ith element to be u; € R. The force, F;, necessary to

12



water surface

Lottom

Figure 9: Shallow-water linear-wave notation.

change the original length of the ith spring by amount 0; = u; — u;_y — Ax
is F; = kd;. Masses are free to move in the z-direction. Their inertia is
balanced by the reaction force of the springs. Each element (except the end

ones) experiences a spring force from the neighboring (i — 1)st and (i + 1)st
springs, so Newton’s law from the ith element is m% =F—F, = k(ui—

u; — u; +ui—1), 1 = 1,2,.... Let p be the density, so m = pAz, while the
spring constant is described by ¢ = kAz. So,

A d2ui o ( ) g ( ) dQui O Ujr1 — 2U1 + U1
T = —(Ujp1 — ;) — —(u; —u;—q1) oOr = — )
P Az T Az ! dt? P Az?

Letting Ax — 0, then the left-hand side — 9%u/dt* and the right-hand side
— %82u/8x2, so we have the 1D wave equation with wave speed ¢ = /a/p,
and u describes the longitudinal waves along the suspended chain of masses.
In the context of pressure density perturbations of a compressible fluid, like
air, the wave equation describes 1D sound waves (think organ pipes).
Figure 9 depicts long waves in shallow water of constant density p and
mean water depth d(z) > 0. Let the wave height above the undisturbed
surface be w(x,t). Assume particle acceleration to be sufficiently small that
the pressure p at any point beneath the surface is essentially hydrostatic, so
that pressure p = pg(w — y), where g is the gravity acceleration constant.
Then the accelerating force in the z-direction is proportional to p, = pgw,
and since it is independent of y it is reasonable to write the x component of
particle velocity as v = v(x,t). The acceleration of a fluid particle is given

by % = v + Uw‘fl—f = v + Vv, = —gw,, neglecting any viscous forces. From
conservation of mass principle for fluid lying between x and z + Az, one
can obtain (v(w + d)), = —w;. If we have d = constant, and consider v, w

and their derivatives to be small enough to neglect nonlinear terms, then we
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have v, = —gw, and —wy = dv,, so that we arrive at the wave equation
Wi = gdwxx
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